\(\int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx\) [63]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 98 \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {5 \sqrt {11} \sqrt {-5+2 x} E\left (\arcsin \left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{6 \sqrt {5-2 x}}+\frac {13 \sqrt {\frac {3}{22}} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right ),\frac {1}{3}\right )}{\sqrt {-5+2 x}} \]

[Out]

13/22*EllipticF(1/11*33^(1/2)*(1+4*x)^(1/2),1/3*3^(1/2))*66^(1/2)*(5-2*x)^(1/2)/(-5+2*x)^(1/2)-5/6*EllipticE(2
/11*(2-3*x)^(1/2)*11^(1/2),1/2*I*2^(1/2))*11^(1/2)*(-5+2*x)^(1/2)/(5-2*x)^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {164, 115, 114, 122, 120} \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {13 \sqrt {\frac {3}{22}} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right ),\frac {1}{3}\right )}{\sqrt {2 x-5}}-\frac {5 \sqrt {11} \sqrt {2 x-5} E\left (\arcsin \left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{6 \sqrt {5-2 x}} \]

[In]

Int[(7 + 5*x)/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(-5*Sqrt[11]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2])/(6*Sqrt[5 - 2*x]) + (13*Sqrt[
3/22]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/Sqrt[-5 + 2*x]

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 115

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x
]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d*x]*Sqrt[b*((e + f*x)/(b*e - a*f))])), Int[Sqrt[b*(e/(b*e - a*f)
) + b*f*(x/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 122

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[b*((c
+ d*x)/(b*c - a*d))]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps \begin{align*} \text {integral}& = \frac {5}{2} \int \frac {\sqrt {-5+2 x}}{\sqrt {2-3 x} \sqrt {1+4 x}} \, dx+\frac {39}{2} \int \frac {1}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx \\ & = \frac {\left (39 \sqrt {5-2 x}\right ) \int \frac {1}{\sqrt {2-3 x} \sqrt {\frac {10}{11}-\frac {4 x}{11}} \sqrt {1+4 x}} \, dx}{\sqrt {22} \sqrt {-5+2 x}}+\frac {\left (5 \sqrt {-5+2 x}\right ) \int \frac {\sqrt {\frac {15}{11}-\frac {6 x}{11}}}{\sqrt {2-3 x} \sqrt {\frac {3}{11}+\frac {12 x}{11}}} \, dx}{2 \sqrt {5-2 x}} \\ & = -\frac {5 \sqrt {11} \sqrt {-5+2 x} E\left (\sin ^{-1}\left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{6 \sqrt {5-2 x}}+\frac {13 \sqrt {\frac {3}{22}} \sqrt {5-2 x} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right )|\frac {1}{3}\right )}{\sqrt {-5+2 x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 8.67 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.91 \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {220 \sqrt {1+4 x} \left (10-19 x+6 x^2\right )+55 \sqrt {66} \sqrt {\frac {-5+2 x}{1+4 x}} \sqrt {\frac {-2+3 x}{1+4 x}} (1+4 x)^2 E\left (\arcsin \left (\frac {\sqrt {11}}{\sqrt {1+4 x}}\right )|\frac {1}{3}\right )-78 \sqrt {66} \sqrt {\frac {-5+2 x}{1+4 x}} \sqrt {\frac {-2+3 x}{1+4 x}} (1+4 x)^2 \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {11}}{\sqrt {1+4 x}}\right ),\frac {1}{3}\right )}{132 \sqrt {2-3 x} \sqrt {-5+2 x} (1+4 x)} \]

[In]

Integrate[(7 + 5*x)/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(220*Sqrt[1 + 4*x]*(10 - 19*x + 6*x^2) + 55*Sqrt[66]*Sqrt[(-5 + 2*x)/(1 + 4*x)]*Sqrt[(-2 + 3*x)/(1 + 4*x)]*(1
+ 4*x)^2*EllipticE[ArcSin[Sqrt[11]/Sqrt[1 + 4*x]], 1/3] - 78*Sqrt[66]*Sqrt[(-5 + 2*x)/(1 + 4*x)]*Sqrt[(-2 + 3*
x)/(1 + 4*x)]*(1 + 4*x)^2*EllipticF[ArcSin[Sqrt[11]/Sqrt[1 + 4*x]], 1/3])/(132*Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*(1
 + 4*x))

Maple [A] (verified)

Time = 1.59 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.52

method result size
default \(\frac {\left (124 F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )-55 E\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )\right ) \sqrt {5-2 x}\, \sqrt {22}}{132 \sqrt {-5+2 x}}\) \(51\)
elliptic \(\frac {\sqrt {-\left (-2+3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}\, \left (\frac {7 \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{121 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}+\frac {5 \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, \left (-\frac {11 E\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{12}+\frac {2 F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{3}\right )}{121 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}\right )}{\sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}}\) \(167\)

[In]

int((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/132*(124*EllipticF(1/11*(11+44*x)^(1/2),3^(1/2))-55*EllipticE(1/11*(11+44*x)^(1/2),3^(1/2)))*(5-2*x)^(1/2)*2
2^(1/2)/(-5+2*x)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.27 \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {427}{216} \, \sqrt {-6} {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right ) + \frac {5}{6} \, \sqrt {-6} {\rm weierstrassZeta}\left (\frac {847}{108}, \frac {6655}{2916}, {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right )\right ) \]

[In]

integrate((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="fricas")

[Out]

-427/216*sqrt(-6)*weierstrassPInverse(847/108, 6655/2916, x - 35/36) + 5/6*sqrt(-6)*weierstrassZeta(847/108, 6
655/2916, weierstrassPInverse(847/108, 6655/2916, x - 35/36))

Sympy [F]

\[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {5 x + 7}{\sqrt {2 - 3 x} \sqrt {2 x - 5} \sqrt {4 x + 1}}\, dx \]

[In]

integrate((7+5*x)/(2-3*x)**(1/2)/(-5+2*x)**(1/2)/(1+4*x)**(1/2),x)

[Out]

Integral((5*x + 7)/(sqrt(2 - 3*x)*sqrt(2*x - 5)*sqrt(4*x + 1)), x)

Maxima [F]

\[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {5 \, x + 7}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

[In]

integrate((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((5*x + 7)/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

Giac [F]

\[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {5 \, x + 7}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

[In]

integrate((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="giac")

[Out]

integrate((5*x + 7)/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {5\,x+7}{\sqrt {2-3\,x}\,\sqrt {4\,x+1}\,\sqrt {2\,x-5}} \,d x \]

[In]

int((5*x + 7)/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)),x)

[Out]

int((5*x + 7)/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)), x)